viernes, 18 de septiembre de 2015

 Quien era Fraunhofer

 Como científico, ingeniero y emprendedor alcanzó logros como el descubrimiento de las "líneas de Fraunhofer" en el espectro óptico de la luz del sol, inventó un nuevo método de manufactura de lentes e inició un negocio de producción de vidrio para microscopios y telescopios.

También inventó la retícula de difracción transformando así la espectroscopia de arte a ciencia, demostrando el modo exacto de medir la longitud de onda de la luz. Fue el primero en darse cuenta de que los espectros de Sirio y de otras estrellas brillantes eran distintos entre sí y del Sol, iniciando de ese modo la espectroscopia estelar

Óptica  geométrica

En física, la óptica geométrica parte de las leyes fenomenológicas de Snell de la reflexión y la refracción. A partir de ellas, basta hacer geometría con los rayos luminosos para la obtención de las fórmulas que corresponden a los espejos, dioptrio y lentes , obteniendo así las leyes que gobiernan los instrumentos ópticos a que estamos acostumbrados.

La óptica geométrica usa la noción de rayo luminoso; es una aproximación del comportamiento que corresponde a las ondas electromagnéticas (la luz) cuando los objetos involucrados son de tamaño mucho mayor que la longitud de onda usada; ello permite despreciar los efectos derivados de la difracción, comportamiento ligado a la naturaleza ondulatoria de la luz.

Esta aproximación es llamada de la Eikonal y permite derivar la óptica geométrica a partir de algunas de las ecuaciones de Maxwell.





Si un rayo de luz que se propaga a través de un medio homogéneo incide sobre la superficie de un segundo medio homogéneo, parte de la luz es reflejada y parte entra como rayo refractado en el segundo medio, donde puede o no ser absorbido. La cantidad de luz reflejada depende de la relación entre los índices de refracción de ambos medios. El plano de incidencia se define como el plano formado por el rayo incidente y la normal (es decir, la línea perpendicular a la superficie del medio) en el punto de incidencia. El ángulo de incidencia es el ángulo entre el rayo incidente y la normal. Los ángulos de reflexión y refracción se definen de modo análogo. Las leyes de la reflexión afirman que el ángulo de incidencia es igual al ángulo de reflexión, y que el rayo incidente, el rayo reflejado y la normal en el punto de incidencia se encuentran en un mismo plano.







Willebrord Snell
 van Royen (Leiden, 1580 - 30 de octubre de 1626), también conocido como Snellius e indebidamente reflejado como Snell,1 fue un astrónomo y matemático holandés célebre por la ley de la refracción que lleva su nombre. Introdujo varios descubrimientos importantes sobre el tamaño de la Tierra y realizó mejoras al método aplicado del cálculo

Pierre de Fermat

Pierre de Fermat (Beaumont-de-Lomagne, Francia, 17 de agosto de 1601;1 Castres, Francia, 12 de enero de 1665) fue un jurista y matemático francés apodado por el historiador de matemáticas escocés, Eric Temple Bell, con el remoquete de «príncipe de los aficionados».2

Fermat fue junto con René Descartes uno de los principales matemáticos de la primera mitad del siglo XVII.

Descubrió el cálculo diferencial antes que Newton y Leibniz, fue cofundador de la teoría de probabilidades junto a Blaise Pascal e independientemente de Descartes, descubrió el principio fundamental de la geometría analítica.

 óptica física.

La óptica física es la rama de la física que toma la luz como una onda y explica algunos fenómenos que no se podrían explicar tomando la luz como un rayo. Estos fenómenos son:

Difracción: Es la capacidad de las ondas para cambiar la dirección alrededor de obstáculos en su trayectoria, esto se debe a la propiedad que tienen las ondas de generar nuevos frentes de onda.

Polarización: Es la propiedad por la cual uno o más de los múltiples planos en que vibran las ondas de luz se filtra impidiendo su paso. Esto produce efectos como eliminación de brillos.


Luz blanca.

La luz procedente de una estrella, conocida como luz blanca, es una superposición de luces de diferentes colores, las cuales presentan una longitud de onda y una frecuencia específicas. La dispersión de la luz es un fenómeno que se produce cuando un rayo de luz blanca atraviesa un medio transparente (por ejemplo un prisma) y se refracta, mostrando a la salida de éste los respectivos colores que la constituyen.

La dispersión tiene su origen en una disminución en la velocidad de propagación de la luz cuando atraviesa el medio. Debido a que el material absorbe y reemite la luz cuya frecuencia es cercana a la frecuencia de oscilación natural de los electrones que están presentes en él, ésta luz se propaga un poco más despacio en comparación a luz de frecuencias distintas. Estas variaciones en la velocidad de propagación dependen del índice de refracción del material y hacen que la luz, para frecuencias diferentes, se refracte de manera diferente. En el caso de una doble refracción (como sucede en el prisma) se distinguen entonces de manera organizada los colores que componen la luz blanca: la desviación es progresiva, siendo mayor para frecuencias mayores (menores longitudes de onda); por lo tanto, la luz roja es desviada de su trayectoria original en menor medida que la luz azul.

La descomposición de la luz blanca en los diferentes colores que la componen, data del siglo XVIII, debido al físico, astrónomo y matemático Isaac Newton.

La luz blanca se descompone en estos colores principales:

Rojo (el color que sufre la menor desviación)
Anaranjado.
Amarillo.
Verde.
Celeste.
Azul.
Violeta (el color que sufre la mayor desviación)

Esto demuestra que la luz blanca está constituida por la superposición de todos estos colores. Cada uno de los cuales sufre una desviación distinta ya que el índice de refracción de, por ejemplo, el vidrio es diferente para cada uno de los colores.
Si la luz de un color específico, proveniente del espectro de la luz blanca, atravesara un prisma, esta no se descompondría en otros colores ya que cada color que compone el espectro es un color puro o monocromático.

Colores del espectro.
Los colores del arco iris en el espectro visible incluye todos esos colores que pueden ser producidos por la luz visible de una sola longitud de onda (violeta, azul, celeste, verde, amarillo, naranja y rojo), los colores del espectro puro o monocromáticos. El espectro visible no agota los colores que el hombre es capaz de distinguir. Colores sin saturar como el rosa, o variaciones del púrpura como el magenta no pueden reproducirse con una sola longitud de onda.

A pesar que el espectro es continuo no hay cantidades vacías entre uno y otro color, los rangos anteriores podrían ser usados como una aproximación.4

Espectroscopia.

Los estudios científicos de objetos basados en el espectro de luz que emiten es llamado espectroscopia. Una aplicación particularmente importante de éste estudio es en la astronomía donde los espectroscopios son esenciales para analizar propiedades de objetos distantes. La espectroscopia astronómica utiliza difracción de alta dispersión para observar espectros muy altas resoluciones espectrales. El helio fue lo primero que se detectó en el análisis del espectro del sol; los elementos químicos pueden ser detectados en objetos astronómicos por las líneas espectrales y las líneas de absorción; la medida de líneas espectrales puede ser usada como medidas de corrimiento al rojo o corrimiento al azul de objetos distantes que se mueven a altas velocidades. El primer exoplaneta en ser descubierto fue el encontrado por el análisis de efecto Doppler de estrellas a las que su alta resolución que variaba su velocidad radial tan pequeñas como unos pocos metros por segundo podrían ser detectadas: la presencia de planetas fue revelada por su influencia gravitacional en las estrellas analizadas.


rojo       618-780 nm
anaranjado   581-618 nm
amarillo       570-581 nm
verde           497-570 nm
cian           476-497 nm
azul           427-476 nm
violeta      380-427 nm













No hay comentarios:

Publicar un comentario